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Abstract

Alzheimer's disease (AD) is a common neurodegeneration disease associated with

substantial disruptions in the brain network. However, most studies investigated
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static resting-state functional connections, while the alteration of dynamic functional

connectivity in AD remains largely unknown. This study used group independent

component analysis and the sliding-window method to estimate the subject-specific

dynamic connectivity states in 1704 individuals from three data sets. Informative

inherent states were identified by the multivariate pattern classification method, and

classifiers were built to distinguish ADs from normal controls (NCs) and to classify

mild cognitive impairment (MCI) patients with informative inherent states similar to

ADs or not. In addition, MCI subgroups with heterogeneous functional states were

examined in the context of different cognition decline trajectories. Five informative

states were identified by feature selection, mainly involving functional connectivity

belonging to the default mode network and working memory network. The classifiers

discriminating AD and NC achieved the mean area under the receiver operating char-

acteristic curve of 0.87 with leave-one-site-out cross-validation. Alterations in con-

nectivity strength, fluctuation, and inter-synchronization were found in AD and MCIs.

Moreover, individuals with MCI were clustered into two subgroups, which had differ-

ent degrees of atrophy and different trajectories of cognition decline progression.

The present study uncovered the alteration of dynamic functional connectivity in AD

and highlighted that the dynamic states could be powerful features to discriminate

patients from NCs. Furthermore, it demonstrated that these states help to identify

MCIs with faster cognition decline and might contribute to the early preven-

tion of AD.

K E YWORD S

Alzheimer's disease, classification, dynamic connectivity, functional network

1 | INTRODUCTION

Alzheimer's disease (AD) is a common neurodegeneration disease

associated with substantial disruptions in brain function (Braak &

Braak, 1991; Scheltens et al., 2021). Extensive studies using functional

magnetic resonance imaging (fMRI) have also suggested AD to be a

disconnection syndrome (Delbeuck et al., 2007) with disrupted large-

scale functional networks (Dai & He, 2014; Dennis &

Thompson, 2014; Liu et al., 2014; Wang et al., 2013). Altered func-

tional connectivity can reflect disease-specific damages (Seeley

et al., 2009) and is associated with the amyloid β-protein (Aβ) burden

in patients (Hahn et al., 2019). Mild cognitive impairment (MCI) is sug-

gested to be an intermediate state between normal aging and demen-

tia, which is considered a high-risk state for AD.

Previous studies have identified impairments in functional con-

nectivity in multiple functional networks in AD, including the default

mode network (DMN), the salience network, and the executive con-

trol network, and those altered functional activities might contribute

to the disease diagnosis (Dai & He, 2014). In contrast to the com-

monly used stationary functional connectivity, emerging studies have

started to investigate dynamic functional connectivity that provides a

new perspective in the observation of dynamic activities and the

understanding of the intrinsic organization of the brain (Agosta

et al., 2012). The clinical relevance of dynamic functional connectivity

and its potential utility as biomarkers have been reported in clinical

studies in AD (Filippi et al., 2017), with abnormal dynamic functional

connectivity mainly found in frontal and temporal cortices and associ-

ated with cognitive performances in AD (Gu et al., 2020). However,

the small sample size and primary methods of those studies restricted

the reliability and generalization. The understanding of the dynamic

alteration and its potential diagnosis contribution in AD remains

poorly studied.

Dynamic functional connectivity analysis usually uses the sliding

time window method to compute dynamic functional connectivity

(Allen et al., 2014). Clustering and decomposition methods were uti-

lized to investigate the state of functional brain activity (Hutchison
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et al., 2013; Preti et al., 2017), including K-means (Allen et al., 2014),

principal component analysis (Leonardi et al., 2013), and independent

component analysis (ICA) (Du et al., 2017; Miller et al., 2016; Yaesoubi

et al., 2015). However, most studies only compared the group-level

dynamic states between groups and ignored individual states and

time-varying concentrations (Du et al., 2017). Notably, AD is a disor-

der that shows heterogeneity in clinical profile, pathology, and func-

tional network (Chen et al., 2022; Lam et al., 2013), so the group-level

dynamic functional connectivity might not capture the individual vari-

ability. Therefore, it is of essential importance to investigate the

dynamic changes of functional activity more precisely by considering

individual variability.

The primary aim of our study is to investigate the changes in

dynamic time-varying characteristics by considering individual vari-

ability in AD and MCI. For this purpose, we used the group informa-

tion guided ICA (GIG-ICA), an ICA framework for fMRI data analysis,

to estimate the subject-specific inherent connectivity states individu-

ally based on dynamic functional connectivity patterns. GIG-ICA can

adapt to the heterogeneity by capturing states at both group-level

and subject-level and was widely applied to estimate subject-specific

networks in psychiatric disorders (Jing et al., 2019; Jing et al., 2020;

Salman et al., 2019). Then, a multivariate pattern classification tech-

nique was adopted to identify informative inherent states and built

support vector machine (SVM) classifiers to distinguish ADs from nor-

mal controls (NCs). Finally, SVM classifiers based on AD and NC were

used to group individuals with MCI. We investigate the dynamic fea-

tures, cognition, gray matter volume, and cognition decline across

MCI sub-groups (Figure 1).

2 | MATERIALS AND METHODS

2.1 | Participants

In this study, resting-state fMRI scans were acquired in 1704 individ-

uals from three data sets. Data set 1 (young normal, YN) included

343 individuals with normal cognition. Data set 2 included 257 healthy

NCs individuals, 257 MCI patients, and 295 AD patients from Multi-

Center Alzheimer Disease Imaging Consortium Dataset (MCAD),

including seven sites. Data set 3 included 259 NC, 184 subjects with

MCI, and 109 AD patients from the Alzheimer's Disease Neuroimag-

ing Initiative (ADNI) (www.adni.loni.usc.edu) database, which were

used to investigate the longitudinal changes of MCI. The demo-

graphic, clinical information details, and ethics information are shown

in Tables 1 and S1. Additional information about the ADNI data set

was found at http://adni.loni.usc.edu/wp-content/uploads/how_to_

apply/ADNI_Acknowledgement_List.pdf.

2.2 | Image acquisition and preprocessing

This section briefly overviews the MRI acquisition, preprocessing, and

quality control with further details in the Supporting Information and

our previous studies (Chen et al., 2022; Du et al., 2022; Jin, Wang,

et al., 2020; J. Li et al., 2019; Qu et al., 2021). In Data set 1, individuals

were scanned on one 3.0 T MRI scanner to obtain resting-state func-

tional images (Tao et al., 2015). In Data set 2, individuals were

scanned on one of seven different 3.0 T MRI scanners to obtain

T1-weighted images and resting-state functional images (Chen

et al., 2022; Qu et al., 2021), and the corresponding MRI acquisition pro-

tocols are described in Table S2. In Data set 3, individuals were scanned

on a variety of 3.0 T scanners using standardized protocols at each site

and resting-state functional images were included in the present study

(http://adni.loni.usc.edu/methods/mri-tool/mri-acquisition/).

All the fMRI scans from three data sets were preprocessed using

the Brainnetome Toolkit (http://brant.brainnetome.org) (Xu

et al., 2018). The detailed information is described in our previous

study (Jin, Wang, et al., 2020) and includes the following steps:

(1) slice timing correction; (2) realignment to the first volume; (3) spa-

tial normalization to MNI space at 2 mm � 2 mm � 2 mm; (4) regres-

sion of nuisance signals, including linear trends, six motion

parameters, and their first-order differences, and signals represent-

ing white matter and cerebrospinal fluid; and (5) temporal bandpass

filtering (0.01–0.08 Hz) to reduce high-frequency noise. Subse-

quently, any voxel for which the mean absolute deviation in the fMRI

signal was less than 0.05 and any area that did not have an fMRI sig-

nal recorded from one or more participants was excluded. This

resulted in a set of 263 regions of the Brainnetome Atlas (Fan

et al., 2016) after quality control and this set was used in all further

analyses (Jin, Wang, et al., 2020). The structural MRI images were

preprocessed using the standard steps in the CAT12 toolbox (http://

dbm.neuro.uni-jena.de/cat/, r1450), and the regional gray matter

volume of each brain region was extracted using the Brainnetome

Atlas (Fan et al., 2016).

2.3 | Identification of dynamic functional
connectivity patterns

For each individual, we computed whole-brain time-varying functional

connectivity matrices between all pairs of regions of the Brainnetome

Atlas using a sliding time window method (window length = 60 s) as

dynamic functional patterns (Allen et al., 2014). Connectivity strength

(i.e., correlation coefficients) was transformed using Fisher's

z transformation. GIG-ICA was applied to the intra-group individuals'

dynamic connectivity patterns to extract the subject-specific indepen-

dent components as inherent connectivity states (ICSs) and the time-

varying coefficients of each ICS (Du et al., 2017). The number of ICS

was empirically determined to be 50.

In particular, NCs from Data set 1 were used to compute the

group-level independent components by analyzing the window-

direction concatenated dynamic connectivity patterns in an unbiased

setting (detailed method can be found in the Supporting Information

and elsewhere in our previous studies [Jing et al., 2020; Jing

et al., 2019]). Then these components were used as guidance informa-

tion to correspondingly back-reconstruct the subject-specific ICSs of

the remaining participants from Data sets 2 and 3 using GIG-ICA.

These ICSs were inter-individual variables and were similar within

JING ET AL. 3469
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each group. Finally, the dynamic functional connectivity of each sub-

ject was characterized by 50 ICSs and their corresponding time-

varying weight coefficients. Notably, for each subject, all states esti-

mated in ICA back-reconstruction were normalized by removing the

mean value of dynamic connectivity patterns.

2.4 | Supervised feature selection to identify the
informative inherent connectivity states

To investigate the importance of ICSs and avoid feature redundancy,

we selected ICSs using a simplified forward selection technique based

F IGURE 1 Schematic of the dynamic functional connectivity analysis pipeline. (a) Acquisition of dynamic functional connectivity from fMRI.
(b) The young normal sample from the Data set 1 was used to compute the group-level independent states, and then (c) these states were used as
guidance information to calculate the subject-specific states of the remaining participants from two disease data sets (Data sets 2 and 3) using
GIG-ICA. (d) A leave-one-site-out cross-validation procedure was used to identify the informative inherent states by using a simplified forward
selection technique based on a support vector machine (SVM) model. (e) Abnormal dynamic characteristics of informative states were
investigated (I) and classification was performed based on informative states between AD and NC (II). The individuals with MCI were divided into
two subgroups based on their SVM scores, and the statistical analysis was performed on the clinical and structural characteristics between groups
(III). AD, Alzheimer's disease; fMRI, functional magnetic resonance imaging; MCI, mild cognitive impairment; NC, normal control.
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on an SVM model. The kernel SVM model was determined by the sim-

ilarity measures defined as the Riemannian distance on the Grass-

mann manifold between samples computed based on their ICSs (Fan

et al., 2011; P. Li et al., 2017).

Specifically, we utilized a leave-one-site-out cross-validation pro-

cedure to identify the critical ICSs for AD classification in Data set

2. At each cross-validation time, one site was the testing set, with the

other six sites as the training set. On each training set, 10-fold cross-

validation was applied to build aggregated SVM classifier and to select

an optimal combination of ICSs with the forward component selection

algorithm (Figure 2a) (Jing et al., 2019, 2020). The forward selection

algorithm built a classifier upon each ICS, and all ICSs were sorted by

the area under the receiver operating characteristic curve (AUC; first

rank) and classification accuracy (second rank) numerically from the

largest to the smallest. Then, by combining the first k (k = 1, 2, …, 50)

ordered ICSs sequentially, 50 classifiers were built and the classifica-

tion performance of those was obtained. Finally, the combination of

ICSs with the overall best classification performance was chosen as

the most discriminative ICSs. A nested 10-fold cross-validation was

used to optimize the parameters of classifiers. We could get the selec-

tion frequency of each ICS after the whole 70 times forward selec-

tions. Finally, informative ICSs of AD were identified as those selected

with higher frequency.

2.5 | Functional annotation for informative ICSs
based on Neurosynth

To investigate the potential cognitive functions of informative ICSs,

we used the online platform Neurosynth (https://neurosynth.org/),

which includes meta-analytic brain maps on a large amount of human

functional neuroimaging studies (Yarkoni et al., 2011). First, we calcu-

lated the strength of each region (sum of the weighted edges linked

to each region) for each informative ICS, and the negative weight of

nodes was set to zeros. Then, the region-based data were mapped to

volume images that were used as input to identify region-associated

cognitive terms through the Neurosynth “decoder” function. Finally,

the mental terms with correlations >.1 were visualized on a word-

cloud plot, with sizes scaled according to their correlations with the

corresponding meta-analytic maps, excluding anatomical terms (Sha

et al., 2022).

2.6 | Classification between AD and NC based on
informative ICSs

The multivariate pattern classification method using the leave-one-

site-out cross-validation procedure based on the selected informative

ICSs was applied to individuals in the seven sites in Data set 2. The

classification approach based on the selected informative ICSs was

repeatedly applied to individuals in seven training and testing loops. In

each site-specific testing loop, the 10-fold cross-validation model

yielded 10 SVM classifiers for distinguishing AD patients from NCs.

We set the median value of classification scores of these nested

10-fold cross-validation classifiers as the classification score for each

subject in the test site, with a positive classification score to indicate

AD or a negative value to indicate NC. Nonparametric permutation

tests were used to estimate the statistical significance of the classifi-

cation performance. The null distribution of the AUC was estimated

for all site-specific SVM models by performing 100 leave-one-site-out

cross-validation permutation tests with subject class labels randomly

permuted, resulting in 700 AUCs of permutation tests.

We adopted a certainty measure (max np
n ,

nn
n

� �
to evaluate the clas-

sification reliability for each subject based on the aggregated classi-

fiers, where np and nn are the number of positive or negative

classification scores, respectively, and n is the total number of classi-

fiers [here, n=10 in Data set 2]; Jing et al., 2019). A higher value indi-

cated higher classification reliability and vice versa. We excluded

subjects with lower classification certainty (<0.8) in post hoc analyses.

To validate the generalization of the informative ICSs selected in Data

set 2, we also independently performed the classification based on

the informative ICSs in Data set 3. We conducted 50 times random-

hold-out validation with 90 AD and 90 NC in each iteration to keep

the sample size balanced.

TABLE 1 Demographic characteristics per data set.

Data set Group n Gender (M/F) p Age p MMSE p

Data set 1 (YN) NC 343 187/156 – 31.18 ± 11.39 – – –

Data set 2 (MCAD) NC 257 104/153 .66a 66.93 ± 6.83 .01b 28.52 ± 1.64 <.001b

MCI 257 114/143 68.56 ± 8.91 25.14 ± 3.39

AD 295 123/172 68.89 ± 8.27 16.56 ± 6.02

Data set 3 (ADNI) NC 259 115/144 .54a 71.5 ± 6.0 .07b 29.0 ± 1.1 <.001b

MCI 184 102/82 72.0 ± 7.8 28.0 ± 1.7

AD 109 59/50 73.3 ± 7.2 22.6 ± 3.6

Abbreviations: AD, Alzheimer's disease; MCAD, Multi-Center Alzheimer Disease Imaging Consortium Dataset; MCI, mild cognitive impairment; MMSE,

Mini-Mental State Examination; NC, normal control; YN, young normal.
aχ2 test.
bOne-way analysis of variance.
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2.7 | Subgrouping MCI based on informative ICSs

The site-specific classifiers were applied to the ICSs of MCIs, so

each MCI was given 10 individual classification scores. The

median of the 10 individual classification scores was used as a

robust measure to characterize the affinity of each MCI to

AD. Positive classification scores reflected an AD-specific func-

tional pattern, and negative scores indicated an NC-specific way.

So, MCIs with classification scores >0 were assigned to the AD-

specific subgroup (A-MCI), and those with classification scores <0

were assigned to the NC-specific subgroup (N-MCI). We also

adopted a certainty measure to evaluate the classification

reliability for each subject based on the aggregated classifiers. We

excluded subjects with lower classification certainty (<0.8) in post

hoc analyses.

Moreover, to assess whether the dynamic measures could reveal

different cognitive impairment progressions, we used MCI patients

from Data set 3 and divided them into two subgroups based on the

fitted model in Data set 3. Linear mixed models were used to evaluate

longitudinal cognition decline over time. The month from baseline (the

visit session scanned fMRI), subgroup, and their interaction were

included as fixed effects (p < .05). Subject intercepts and slopes were

modeled as random effects. Age and sex were also considered as

covariates.

F IGURE 2 Informative ICSs and functional annotation. (a) Schematic of the cross-validation scheme to select informative ICSs for each of the
seven scanners. (b) The selected frequency of all the ICSs. The ICSs with the top 5 selected frequencies were informative ICSs. (c) Functional
connectivity weight of informative ICSs derived from the feature selection. Node size represents the degree of each region. (d) The brain map
weighted by the network degree and functional annotation of informative ICSs. Word cloud figures showed the functional items (r > .1) derived
from a meta-analysis on Neurosynth. ICS, inherent connectivity state.
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2.8 | Correlation with clinical measures

A general linear model was used to investigate the correlations

between the classification scores and MMSE in groups with age, sex,

and site covariates to explore the relationship between the classifica-

tion output and clinical measures in Data set 2.

2.9 | Comparisons of brain intrinsic, structural, and
clinical characteristics

The functional connectivity strength in the informative ICSs was com-

pared between any two groups using pseudo-two-sample t tests

(SnPM13; http://warwick.ac.uk/snpm; p = .05, permutation tests

n = 5000, age, sex, and site as covariates). We also investigated the

group differences of fluctuation coefficients and synchronization

coefficients of informative ICSs by a two-sample two-sided t test to

explore if functional states' changes were associated with dynamic

alterations (age, sex, and site as covariates). The fluctuation coefficient

was the average change of the frame-wise variation of each informa-

tive ICS's time-varying weight coefficients. The synchronization coef-

ficient was calculated by partial correlation analysis between all pairs

of informative ICSs based on time-varying weight coefficients.

We also investigated the group differences between NC, MCI

subgroups, and AD in clinical and structural characteristics by using a

two-sample t test in a similar setting. The MMSE score was compared

between groups with age, sex, and site as covariates. The difference

in regional gray matter volume between the two MCI subgroups was

investigated by using a two-sample t test with age, sex, site, and total

intracranial volume as covariates (p < .05, FDR corrected across all

regional volume tests performed).

2.10 | Replication experiment on the Power's
264 functional ROIs

To further validate the robustness of the method and the main results

of the present study, we replicated the experiment using the same

scans and similar procedures. The only difference was the calculation

of the dynamic functional connectivity matrices based on Power's

264 functional ROIs (Power et al., 2011) instead of the Brainnetome

Atlas. In addition, the confusion matrix of the subgroups' results from

two experiments was used to quantify the robustness of the results.

3 | RESULTS

3.1 | Informative ICSs in AD identified by pattern
classification

The top five informative ICSs (Figure 2b, frequency > 0.6) were con-

served after the feature selection (Figure 2a). The associated func-

tional connectivity of each informative ICS is shown in Figure 2c. ICS1

involved functional connectivity in the middle temporal gyrus, inferior

frontal gyrus, and precuneus. ICS2 included the bilateral superior tem-

poral gyrus, the precuneus, the cingulate gyrus, and the medial pre-

frontal lobe, which connected the middle prefrontal lobe with the

anterior cingulate gyrus and parietal lobe. Most of the functional con-

nections of ICS3 were involved in the bilateral dorsolateral prefrontal

lobe and the precuneus. ICS4 had functional connections that con-

nected the left dorsolateral prefrontal lobe and inferior parietal lobule.

ICS5 mainly includes the functional connectivities between the infe-

rior frontal gyrus and superior parietal lobule.

3.2 | Functional annotation for informative ICS

Based on the meta-analysis on Neurosynth, the most prominently

shared functional annotation for informative ICSs that showed alter-

ations in AD were the “Default mode network (DMN)” (Figure 2d and

Table S3). Notably, each network also had additional cognitive anno-

tations. Briefly, ICS1 involved cortical regions associated with mental

states, mind, and social behavior. The functional annotation of ICS2

showed the relevance of the mind and the DMN. Areas with ICS3

linked to the dorsal lateral prefrontal cortex were associated with

working memory and attention tasks. ICS4 was more relevant to lan-

guage tasks. Finally, ICS5 involved regions related to semantics, com-

prehension, language comprehension, and sentences.

3.3 | Classification between AD and NC

The average accuracy of the classifiers built upon the informative ICSs

with leave-one-site-out cross-validation was 79% (sensitivity 85% and

specificity 70%), with a mean AUC of 0.87 (highest AUC of 0.95) in

Data set 2 (Figure 3a). The classification results of each test site were

summarized in Table S4. Nonparametric permutation tests showed

that the classification results were statistically significant (p < .01,

100 permutations), as indicated by the histogram of permuted AUC

shown in Figure 3a. It is worth noting that 96% of the individuals had

high classification certainty (>0.8), and those with lower confidence

were excluded in post hoc analysis. We also applied the classifiers that

optimally separated ADs and NCs to the states of MCIs in Data set

2. As a result, the classification scores of MCI and AD were negatively

correlated with their MMSE (r = �.53, p < .001) (Figure 3b). More-

over, the performance is relatively lower in Data set 3 (AUC = 0.75,

ACC = 0.68, specificity = 0.66, and sensitivity = 0.75) than in Data

set 2.

3.4 | Quantify MCIs with probable conversion
to AD

Individuals with MCI were classified using the models fitted in AD dis-

crimination. According to the classification scores, MCI subjects

showed heterogeneity. We divided them into two subgroups: subjects
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had AD-specific states (classification scores > 0) as probable AD con-

verters (A-MCI), and 126 subjects had NC-specific states (classifica-

tion scores < 0) as probable non-converter (N-MCI). Notably, 95% of

the patients with MCI had high classification certainty (>0.8), and

those with lower confidence were excluded in post hoc analysis.

There was no significant difference in MMSE between the A-MCI and

N-MCI, while the MMSE scores of A-MCI were relatively lower than

that of NC and the MMSE scores of N-MCI were relatively higher

than that of AD (ps <.001; Figure 3c).

In Data set 3, 91 MCI were divided into A-MCI and 93 into N-

MCI based on the model fitted in AD. About 131 (71%) patients with

MCI had high classification certainty (>0.8). The two subgroups of

MCI had different cognition decline progressions (Figure 3d). A-MCI

had a faster decline in composite measures for memory (ADNI-MEN)

and language (ADNI-LAN) than N-MCI (All ps <.05). In contrast, the

two groups had similar decline progression in composite measures for

executive function (ADNI-EF) and visuospatial functioning (ADNI-VS;

Table S6).

3.5 | Dynamic characteristics between groups

Pseudo-t tests were conducted to compare the functional connectiv-

ity of informative ICSs among AD, NC, A-MCI, and N-MCI groups

(Figure 4a). Compared with NCs, ADs, and A-MCIs shared similar

weaker connectivities in all informative ICSs, with ADs showing the

largest alterations. Also, A-MCIs had weaker connectivities than N-

MCIs, with a similar pattern as AD versus NC. The A-MCIs exhibited

higher connectivities in ICS1, ICS4, and ICS5 (partial connections),

while weaker connectivities in ICS2, ICS3, and ICS5 (partial

connections) than in AD. In addition, the N-MCIs exhibited higher

connectivities in ICS1, ICS2, ICS3 (partial connections), ICS4 (partial

connections), and ICS5, with weaker ones in ICS3 (partial connections)

and ICS4 (partial connections) than in NCs. The results delineated

those abnormalities in the connectivity of the informative ICSs largely

overlapped in AD and A-MCI, while N-MCI had a few abnormal

alterations.

The dynamic characteristics of the brain states changed in varying

degrees (Figure 4b,c). The fluctuating coefficients of AD and NC

showed significant differences in ICS1 (p = .023), ICS2 (p = .010),

and ICS4 (p = .039). Meanwhile, significant differences were found in

ICS2 for N-MCI versus AD (p = .022), A-MCI versus NC (p = .015),

and A-MCI versus N-MCI (p = .026). Moreover, the synchronization

coefficient comparisons indicated that AD and A-MCI are associated

with more alterations in inter-ICS synchronization. ICS1 shows the

most synchronous changes. ICS 1–2 synchronization and ICS 1–3 syn-

chronization showed a significant increase in AD versus NC, AD ver-

sus N-MCI, A-MCI versus NC, and A-MCI versus N-MCI (ps < .001).

ICS 1–4 synchronization and ICS 1–5 synchronization showed a

decrease in AD versus NC (ps < .01). The synchronization of other

ICS also shows different degrees of difference between groups. ICS

2–4 synchronization and ICS 3–4 synchronization also showed a sig-

nificant increase in AD versus NC, AD versus N-MCI, A-MCI versus

NC, and A-MCI versus N-MCI (ps < .01). Besides, ICS 4–5 synchroni-

zation showed a decrease in AD vs. NC, AD vs. N-MCI, A-MCI vs. NC,

and A-MCI vs. N-MCI (ps < .01). No significant difference was found

across groups in synchronizations of ICS3 and ICS2, as well as ICS3

and ICS5. It should be noted that the A-MCI and AD showed similar

alteration patterns, while N-MCI showed few alterations compared

with NC.

F IGURE 3 Classification between AD and NC based on informative ICSs. (a) The receiver operating characteristic curves (ROCs) and area
under ROCs (AUC) of inter-site cross-validations. (b) Correlation between the SVM scores and MMSE. (c) The comparison of MMSE between
groups. (d) The cognition declines over the follow-up of the two subgroups of MCI. (*: p < .05, ****: p < .00001). AD, Alzheimer's disease; ICS,
inherent connectivity state; MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination; SVM, support vector machine.
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3.6 | Structural characteristics between groups

Compared to NC, patients with AD showed widespread atrophies in

the whole brain, while the participants with A-MCI showed slighter

atrophy in the cortex and dominant atrophy in the temporal lobe and

hippocampus (Figure 5). The N-MCI showed rare atrophy in most

areas of the cortex and slighter atrophy in the temporal lobe, cingulate

gyrus, thalamus, hippocampus, and inferior parietal lobule. Notably,

the A-MCI showed more atrophy in the hippocampus, anterior cingu-

late, temporal lobe, and thalamus than N-MCI. These results sug-

gested that the dynamics reflected characteristics are associated with

the structural changes in the AD spectrum.

3.7 | Replication experiment on the Power's
264 functional ROIs

Two ICSs were identified based on the Power's parcellation

(Figure S2) and the model's classification accuracy was 75% (sensitiv-

ity 80% and specificity 65%) with an AUC of 0.82 in Data set

2 (Table S5). The individuals with MCI from the same sites were

divided into two subgroups based on Power's 264 Atlas, and the con-

fusion matrix of the subgroups' division between Power's 264 Atlas

and the Human Brainnetome Atlas was shown in Figure S3. In two

experiments, 76.4% of the individuals with MCI were identified as A-

MCI twice and 77.7% were as N-MCI twice. The results verified that

this approach was robust and obtained good division.

4 | DISCUSSION

The present study recovered abnormal dynamic functional states and

their temporal properties in the AD spectrum by disease discrimination

in a large multicenter data set. The five dynamic functional states not

only had good features for discriminating AD and NC accurately (mean

AUC = 0.87) but also showed alterations in functional connectivity

strength, fluctuation, and inter-synchronization. More importantly, our

results showed that changes in dynamic states began in the MCI stage

with only subtle symptoms and could be used to reveal the different

progression of MCI. These results highlight that the dynamic states can

be a powerful feature in discriminating diseased patients from NCs and

might contribute to identifying prognosis markers of MCI.

F IGURE 4 Clinical and brain intrinsic characteristics comparisons. (a) The differences in functional connectivity of informative ICSs among
AD, NC, A-MCI, and N-MCI groups. Red lines represent the increased connectivity and the gray ones represent the decreased connectivity. Node
size represents the degree of each region. (b) Comparison of the fluctuation of informative ICSs between NC, N-MCI, A-MCI, and
AD. (c) Comparisons on synchronization between informative ICSs in NC, N-MCI, A-MCI, and AD. (*: p < .05, **: p < .01, ***: p < .001). A-MCI,
AD-specific subgroup; AD, Alzheimer's disease; ICS, inherent connectivity state; MCI, mild cognitive impairment; N-MCI, NC-specific subgroup;
NC, normal control.
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A novel multivariate classification framework was proposed by

using optimized data-driven methods. Instead of obtaining group-level

dynamics (Hutchison et al., 2013), we used GIG-ICA to extract person-

alized dynamics. Independent cross-site validation was also used for

evaluating the machine learning model (Abraham et al., 2017). Com-

pared with previous studies based on dynamic functional connectivity,

higher accuracy and stability of classification were obtained (de Vos

et al., 2018; Niu et al., 2019). More importantly, the classification per-

formance could achieve the same level (mean AUC = 0.87) of multiple

complex functional features (i.e., functional connectivity, the ampli-

tude of local brain activity, functional connectivity strength and

regional homogeneity, etc.; Jin, Wang, et al., 2020), with only the

subject-specific dynamic functional connectivity, suggesting that

abnormal dynamics could provide additional information for detecting

AD (Deco & Corbetta, 2011). Furthermore, the replication results with

an independent ADNI data set and second brain atlas strength

showed that our findings were highly reproducible.

Previous studies showed that MCI and AD were associated with

disruptions of functional networks, which were associated with mem-

ory, execution, visuospatial ability, and attention (Agosta et al., 2012;

Badhwar et al., 2017; Chen et al., 2023; Dennis & Thompson, 2014;

Eyler et al., 2019; Jones et al., 2016). The DMN is associated with var-

ious cognitive functions and is preferentially disrupted in AD

(Dennis & Thompson, 2014; Eyler et al., 2019). Our results corrobo-

rated these findings, showing a dynamics disruption in the DMN in

AD. Informative ICS2 showed a spatial pattern similar to DMN, and

other Informative ICSs were involved in the DMN. In addition, dis-

rupted functional brain networks are not only restricted to inner

DMN (Agosta et al., 2012). Informative ICS1 involved functional con-

nectivity between the DMN and the salience network. The salience

network was especially associated with emotion and social behavior,

contributing to the social–emotional function changes in AD (Zhou &

Seeley, 2014). The frontoparietal network also showed connectivity

disruptions in AD (Badhwar et al., 2017). The frontoparietal network

and DMN interacted in Informative ICS3, demonstrating a link

between working memory and attention tasks. Moreover, language

function disrupted in AD showed an association with informative

ICS4 and ICS5. The five functional networks derived from informative

ICSs were a disentanglement of the complex disruption of functional

systems in AD (Cohen, 2018). Our findings suggest the mutidomain

cognition impairment in AD under large-scale functional network dis-

ruption might be due to the dynamics damage of multiple brain net-

works (Dai & He, 2014; Dennis & Thompson, 2014; Liu et al., 2014;

Wang et al., 2013).

It is well-accepted that the brain is a complex system for informa-

tion transmission. The brain networks were divided into dynamic

states (ICSs) using GIG-ICA, and the integrative structure of intra- and

inter-informative ICSs was uncovered simultaneously. Most of the

strengths of functional connectivity decreased in the informative ICSs

in AD, which is consistent with the disconnection mechanisms of AD

(Dai & He, 2014). Notably, several synchronizations between ICSs

increased. Segregated ICSs showed more synchronizations might indi-

cate the functional specialization of brain networks disrupted in AD

(Chan et al., 2014; Ewers et al., 2021; Liu et al., 2014). Moreover,

altered brain dynamic functional states dwell time and complexity,

such as DMN-associated states in MCI and AD, were supported by

previous studies (Nunez et al., 2021; Sendi et al., 2021). Consistently,

we observed the fluctuation of ICS1 and ICS4 decreased significantly

in AD compared with NC. The fluctuation of ICS2 increased in AD

compared with NC and N-MCI. ICS2 overlaps with the DMN; the

larger fluctuation of it might cause disrupted activity and lower dwell

time (Nunez et al., 2021; Sendi et al., 2021).

More importantly, the dynamic characteristics also revealed the

different cognition declines of MCI. The more similar dynamic states

to NC corresponded to a slower decline rate, which reminded us that

the early changes of AD were associated with the dynamic state

changes. The N-MCI and A-MCI did not have a significant difference

in cognition in Data set 2, which might be due to the functional activ-

ity changes beyond the measurable pathology and followed neurode-

generation (Jones et al., 2016). The changes in dynamics in MCI were

F IGURE 5 Structural characteristics comparisons between groups. Regional gray matter volume was compared between groups using t test
(pFDR <.05).

3476 JING ET AL.

 10970193, 2023, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26291, W
iley O

nline L
ibrary on [03/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



more about synchronizations rather than fluctuation, reminding us

that the early changes of AD might associate with inter-network syn-

chronization. Several progression markers have been identified as pre-

dictive factors of the converter from MCI to AD (Jin, Zhou,

et al., 2020). In this study, the association with cognition showed that

dynamic functional patterns might be a valuable predictor of disease

progression. Moreover, converging evidence suggests that individuals

with MCI might belong to different subgroups with different risks

(Young et al., 2018; Zhao et al., 2022). The A-MCI subjects with posi-

tive classification scores shared quite similar dynamic patterns

(strength of the informative ICSs, fluctuations, and synchronizations)

with AD patients, indicating a higher risk of converting. The structural

change was also found between the two subgroups of MCI, indicating

the classifiers built on the informative ICSs could be biomarkers for

discovering brain structural alternation.

This study has several limitations. First, the group-level ICSs iden-

tified in Data set 1 guided the back-reconstruction of the subject-

specific ICSs in the other two data sets. Using the independent data

sets for group-level ICSs is beneficial to avoid looking twice at data

sets in different steps of analysis. However, Data set 1 is a younger

normal sample, while Data sets 2 and 3 are older disease samples.

Although the demographic and clinical differences might bring some

bias, replication analysis with the group-level ICSs derived from

healthy individuals in Data set 2 showed a similar result, indicating our

main findings to be not biased by the demographic differences

(Supporting Information: Results S1). Second, acquisition scanning

protocols differed across the studied sites should be noted. Instead of

directly pooling data from all sites, we performed a leave-one-site-out

cross-validation for pattern classification and applied the site-specific

models to the corresponding subjects. Third, longitudinal data were

unavailable in the in-house data set, so we used the participants with

MCI from ADNI as an independent site for validation. Finally, the par-

ticipants' cognitive function was only characterized by MMSE in

MCAD. Other cognitive measures should be collected to facilitate a

more comprehensive characterization of the brain function for further

elucidating the differences between the A-MCI and N-MCI.

In conclusion, the present study using multisite data sets suggests

that abnormal dynamic functional connectivity patterns identified by

a multivariate classification method were informative for quantifying

brain alternation in AD. The classification scores of the MCIs and ADs

were associated with cognitive ability. The identified A-MCI individ-

uals shared similar intrinsic brain patterns to the AD patients regard-

ing functional connectivity strength, fluctuation, and inter-

synchronization. These findings suggest that the dynamic states could

reveal the different progression of MCI and may help to recognize

high-risk MCI subjects early.
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